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Abstract-A discrete formulation is presented for the analysis of suspension bridges. The resulting equations of
equilibrium, which are nonlinear in the displacement terms, are solved by a Newton-Raphson procedure. The
linear solution for each cycle of the Newton-Raphson method is treated as a set of linear initial-value problems.
Numerical difficulties require that a suppression scheme be employed within each linearization. Numerical
problems are presented for both stiffened and unstiffened structures and the results are compared with the
findings of other investigators. The effects of hanger spacing on the results, especially in the end regions of the
stiffening truss, are studied.

1. INTRODUCTION

SUSPENSION bridge analysis has received much attention over the years. Even though
great suspension bridges are being designed and built with relative ease, studies continue
because it affords the investigators an opportunity to understand the suspension bridge
better and to gain insight into more complex cable-supported structures,

The early studies on suspension bridges during the nineteenth century culminated in
the formulation of the "deflection theory" by Melan [lJ in 1888, During the first half of
the twentieth century, many authors [2-5J advanced methods for solving the basic equations
of the deflection theory. These methods were generally designed for solution by hand
or by a desk calculator. A period followed when several methods were presented that
continued to treat the classical deflection theory but presumed the use of a digital com
puter. The more recent contributions [~8J, however, have considered more general
formulations in which some of the restrictive assumptions of the classical deflection theory
have been relaxed. This has not been done solely to get better results. Indeed, there is
evidence that the nature of the assumptions made in the deflection theory did not jeopardize
the results for most loading conditions. However, such assumptions involve artificial
constraints that actually complicate the problem analytically. Thus, although relaxing
the assumptions creates a larger computational problem, it simplifies the formulation of
the problem. With the computer, a large computational problem is not necessarily detri-

t Formerly a graduate student at The Pennsylvania State University.
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mental and the results will include all the "small" effects, which might be significant for
certain loading cases.

West and Robinson [9J developed two separate methods of analysis. One was a discrete
formulation requiring the solution of large numbers of nonlinear simultaneous algebraic
equations, which made it somewhat undesirable from a computational point of view. The
other was a continuous formulation in which the problem was expressed as a nonlinear
boundary-value problem for ordinary differential equations. The differential equations
were solved by an initial-value scheme [9, 10]. Although the latter method was the faster
of the two computationally, the continuous model could not represent the structure as
realistically as the discrete model could. Thus, it seemed reasonable to develop a scheme
that would use a discrete model, which could accurately represent the structure, but solve
the equations by an initial-value scheme. Such a method is presented in this paper.

It is shown that this method can be employed with a model having fewer than the
actual number of hanger points to achieve excellent results. This is important for large
bridges, or other large cable-supported structures, where the computational effort would
be great if the structure is treated in full detail. However, care must be exercised in modeling
the structure if erroneous results at the ends of the span are to be avoided.

In this paper, the derivation of the equations and the detailed algorithm for the solution
of a single-span structure are presented. The general manner in which the equations would
be applied to a three-span structure is also discussed. A few example problems are presented
to illustrate the use of the method and to compare the results with those of other
investigators.

2. DESCRIPTION OF MODEL STRUCTURE

The following items describe the structural model employed in this study:
1. The cable-hanger system is composed of discrete structural elements joined by

frictionless pins at the hanger connection points along the main cable. Each element
is assumed to be loaded uniaxially. Thus, the moment resisting capacity of the cable
is neglected.

2. The stiffening member is treated as a beam in flexure. Shearing deformations are
neglected, although they could be included with relative ease. Decks with variable
moment of inertia are admissible.

3. The main cable is free to displace both vertically and horizontally within the plane
of loading; however, the hanger bases, which attach to the stiffening member, are
only free to displace vertically.

4. The effects of hanger elongations and hanger inclinations are included. Hangers
are present at all node points along the cable except the anchorage and tower points.

5. The cable support systems at the tower and anchorage points are idealized as linear
springs in the vertical and horizontal directions. However, the deck is assumed to
have nonyielding vertical supports.

6. All materials are assumed to obey Hooke's Law. The geometric nonlinearity
associated with the cable-hanger system is fully treated although the stiffening
member is assumed to respond linearly to load.

7. The dead load configuration must be known or determined. For suspension bridges,
the entire dead weight of the structure is assumed to be uniformly distributed along
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the horizontal. Since this dead load is considered to be supported by the cable
only, the cable assumes a parabolic configuration and the stiffening member is un
stressed at mean temperature under dead load.

3. EQUATIONS OF CABLE-HANGER SYSTEM

A single-span cable-hanger system is shown in Fig. 1. The main cable elements and
nodal points are associated with the index i which ranges over (n + 1) node points and n

members. The indices Ii and bi are associated with the hangers and hanger base points,
respectively. The i for each of these indices corresponds to the point on the main cable
from which the hanger is suspended and thus ranges from 2 to n. Applied loads are ad
missible at any of the nodal points along the cable or at the hanger bases.

An enlarged view of the three members framing into joint i is shown in Fig. 2. Since in
general, point i could be a tower or anchorage point, springs are also included which
represent the support restraints. The horizontal and vertical displacements resulting from

2®
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FIG. I. Cable-hanger system.
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FIG. 2. Elements connecting to joint i.
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live load and temperature changes are denoted by U and v, respectively, with the subscript
corresponding to the point at which the displacements are designated. The loads are also
shown in Fig. 2. Live load is denoted by Q and dead load by W with the first subscript
giving the direction of load (H = horizontal, V = vertical) and the second subscript
identifying the point of application of the load. All displacements and loads are positive
in the sense indicated in Fig. 2.

The final equations of equilibrium at station i are derived in the Appendix. Equations
(23) and (24) correspond to horizontal and vertical equilibrium, respectively, at point i
along the main cable, and equation (25) represents vertical equilibrium at the hanger base
at point bi. As described in the Appendix, the right-hand sides of these equations simplify
considerably if the initially assumed dead load configuration is in equilibrium under the
actual dead load. The discussion here presumes that this is the case.

The equations of equilibrium of the Appendix are written in terms of the full load on
the structure-live load and equivalent temperature load. In the application of these
equations, the load term is not always the full load. Thus, in rewriting the equations of
equilibrium below, the load terms (QHi+QkJ, (QVi+Q~J and (QVbi+Qhi) are replaced
by THi , TVi and TVbi ' respectively. These loads will have different interpretations at different
stages in the solution process. Thus, we have the following at point i:

- iXhUh+ (IXh+IXi + IXli + KHJUi - IXiUj - f3h Vh+ (f3h + f3i + f3li)V i - f3iVj - f3liVbi +N Hi = THi (1)

- f3h Uh+ (f3h+ f3i + f31i)u i - f3i Uj - YhVh +(Yh + Yi + Yli + KvJvi- YiVj- 'YliVbi +N Vi = TVi (2)

-f3liUi-Y,iVi+ YliVbi+ N Vbi = TVbi ' (3)

In the above, IX, f3 and yare stiffness quantities as defined in the Appendix, which are
evaluated for the configuration to which the loads are applied. The subscript indicates
the bar that the particular stiffness quantity is associated with. The quantities K Hi and
K Vi are the elastic restraints in the horizontal and vertical directions, respectively, which
are present when i corresponds to a support point. The terms N Hi' N Vi and N Vbi are terms
which are nonlinear in the displacement quantities.

As will be explained later, the procedure used in solving equations 1-3 requires that
these equations be linearized by setting N Hi = N Vi = N Vbi = O. The modified equations
enable one to determine the displacements corresponding to a linear solution for the T
set of loads. Since in the initial-value scheme, the displacements Uh, Vh, Ui and Vi are either
known or assumed, the linearized form of equations (1-3) can be solved for the three
unknown quantities-u j , vj and Vbi . The displacement Vbi can be determined directly
from equation 3 as

(4)

With Vbi now known, equations (1) and (2) can be solved simultaneously for Uj and Vj' In
matrix form, this solution can be expressed in the following indicial form:

_f3i] l~ IXm(~m~Ui)+ ~ f3m(:m ~ Vi)~ KHiu
i
+ THi} (5)

IXi Lf3m(Um Ui)+LYm(Vm vJ KViVi+Tvi
m m
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where the index m ranges over all the bars which frame into joint i with the exception of
bar i (bars h and Ii), and um and Pm are the horizontal and vertical displacements, respec
tively, at the end of bar m which is removed from point i. Thus, for bar h, um = Uh and
Pm = Vh , while for hanger Ii, um = Ubi = 0 and Pm = Vbi •

The quantity ((Xi)'i - f3f) is the determinant of the stiffness matrix of the ith bar. For no
temperature change, this can be shown to be equal to Kfeid/Lid where K i , eid and Lid are
the axial stiffness, elongation and length, respectively, of the ith bar in the configuration
to which the load is being applied. It is thus seen that without some initial load on the
structure, the displacements uj and vj are undefined. In other words, the ith element has
no stiffness without some initial load.

Further study of equation (5) shows that the term Lm(Xm(um-u;)+ L mf3m(Pm-p;) is
the horizontal load at point i associated with deformations of bars h and Ii. Similarly
L mf3m(um-ui)+ Lm )'m(Pm-v;) is the vertical load input at point i from member defor
mations. At support points, the spring deformations also induce forces at point i. Thus,
the column vector in equation (5) contains the loads input at joint i by either the defor
mation of members framing into joint i or the applied loads at joint i.

4. EQUATIONS OF STIFFENING MEMBER

A segment of the stiffening member is shown in Fig. 3 along with the shear, moment
and deflection diagrams for the indicated loading.

An initial-value scheme similar to that used by Newmark [l1J is used to express the
essential relationships for the stiffening member. In indicial form, these relationships are

JIi = JIi - I +Ri - Pi

M i + I = M i + JIi}'i

(6)

(7)
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• I
FIG. 3. Stiffening member: Load, shear, moment and deflection.
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2Eli
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i
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In the above equations, R is the upward hanger load, P is the applied load and V, 1\1, f)

and Vb are the shear, moment, slope and deflection of the stiffening member, respectively.
The panel length is given by A and the member stiffness by EI. In all cases, the subscript
refers to the panel or panel point being specified.

5. SOLUTION OF EQUATIONS

For an unstiffened suspension bridge, equations (1-3) must be satisfied for all points
along the span. For a stiffened bridge, equations (6-9) must also be satisfied. In all equations,
the load terms are understood to be the complete load (live + temperature) above some
known equilibrium configuration. For either type of structure, the load-displacement
relationships are nonlinear because of the influence of the cable. Thus, a direct solution
of the governing equations is not possible and some iterative scheme must be employed.

Newton-Raphson method

The procedure used to solve the nonlinear equations is the Newton-Raphson Method.
This is a well-known method for treating nonlinear problems with many degrees of freedom.
The general technique is described by Livesley [12] and the specific application to the
suspension bridge problem is discussed in detail by West and Robinson [9, 10]. The
essential features of the method as it is applied to the unstiffened structure are briefly
described below and portrayed graphically in Fig. 4. A series of linear solutions is carried

"0
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a. 0
a. 0
<l:-

c,

Lio I'originol equ;1.--I configurotion (J;. Lio )

Displocement , Li

Ci = Position on T - !!. curve
corresponding to configuration for
the ith linearization.

1; = Load corresponding to
deformed configuration after
ith linearization.

(Applied load- 1;) = Load for
(i+ l)th linearization.

(!!.i-,'\i-t) = Displacements
corresponding to ith linearization.

!!., = Accumulated displacements
after ith linearization.

FIG. 4. Newton-Raphson procedure.



Initial-value discrete suspension bridge analysis 1093

out with the loads for each linearization being the difference between the known applied
loads above the original equilibrium configuration and the loads corresponding to the
current configuration. This set of loads is represented by the T loads of equations (4)
and (5). For each linear solution, the stiffness quantities used in equations (4) and (5) are
evaluated for the deformed position about which the linearization is being performed.
The loads corresponding to some deformed configuration are determined from equations
(1-3) by using the stiffness quantities corresponding to the original equilibrium con
figuration and the accumulated displacements. Here, the resulting T loads are the loads
corresponding to this configuration. Eventually, after several linearizations, the loads for
the next linearization approach zero and the deformed structure conforms to the known
applied loads on the system.

In the above discussion, it has been implied that the full load is applied to the structure.
In practice, it is best to segment the load. Each segment of load is treated as described
above, with the original equilibrium configuration for the ith segment corresponding to
the final equilibrium configuration for the (i-l)th segment.

Linear solution

Within the framework of the Newton-Raphson Method, it is necessary to determine
the displacements corresponding to a set of loads using the linear equations. Each linear
solution is treated as an initial-value problem. Two separate formulations are needed
one for the unstiffened structure and one for the stiffened structure.

(a) Unstiffened suspension bridge. For this case, equations (4) and (5) form the basis for
a linear solution. A solution is initiated at point 1 by assuming cable displacements U I

and VI' Since no hanger is present at point 1, equation (4) is not needed. Equation (5) is
also altered by the absence of the hanger Ii and bar h at point 1. Also, since point 1 is a
support point, support springs are present and the load vector of equation (5) at point 1
becomes

(10)

With this load vector, one can solve equation (5) for the displacements U2 and V2 • It is now
possible to solve for Vb2 from equation (4) and U3 and V3 from equation (5). Equations (4)
and (5) are applied in this fashion for all i values across the structure until one finally
occupies station n on the main cable from which Vbn can be determined from equation (4)
and un+ I and Vn+ I can be determined from equation (5).

It is unlikely that the displacements at the terminal point, Un + I and Vn + I' will satisfy
the terminal boundary conditions. This is because the assumed displacements at the
beginning point, UI and VI' are not correct. Thus, there must be some scheme for modifying
the beginning displacements such that the terminal boundary conditions are satisfied.
This is accomplished by carrying three linear solutions simultaneously-one particular
solution and two independent homogeneous solutions. The particular solution measures
the effect of the load while the homogeneous solutions measure the effects of unit changes
in the initially assumed displacements. The assumed initial displacements and loads for
each solution are shown in Table 1, where k = 0 for the particular solution and k = i
for the ith homogeneous solution. The displacements and loads are bracketed and sub
scripted in accordance with the k index. At the terminal point, these three solutions must
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TABLE I. INITIAL CONDITIONS AND LOADS FOR UNSTIFFENED SUSPENSION BRIDGE

Solution Initial displacements Loads

k (ud. (v,l. (TnJ. (TvJ. (TVb'l.

0 (u,)o (vdo (THi)o (TvJo (TvbJo
I (u,), 0 0 0 0
2 0 (v,h 0 0 0

(11)

(13)

be combined in such a way as to satisfy the terminal boundary conditions. Thus we have

±C {(dHn+I)k} {(dHn+I)O} _ {(TH •n+I)O}
k=1 k (dv,,+I)k + (dv,,+I)o - (TV.n+l)o

where the quantities (dHn+ Ih and (d v" + Ih are the horizontal and vertical forces, respec
tively, at the terminal point corresponding to the displacements for the kth linear solution.
The values for dH and d V for each solution are determined from the linear part of the left
hand sides of equations (1) and (2), respectively, for i = n + 1. These equations are some
what simplified by the fact that the hanger Ii and the bar i are not present at joint n + 1.
However, since this is a support point, the support springs are present. Thus, we obtain

(unh

{
(dHn+ I)k} = [-=-_~nj~'!-~~I!'~~~~---=P~~----~'!-_--J (un + I)k (12)
(dv,,+Jlk -Pn I Pn : -Yn . Yn+KV.n+1 (Vn)k

(Vn+Jlk)

Equations (11) are solved for CI and C2' These constants indicate how much of each of
the two homogeneous solutions must be added to the particular solution so that the
forces at the terminal point are equal to those being applied for this linearization. These
constants enable one to determine by superposition any quantity of the final solution, S,
in terms of the corresponding quantities for the particular and homogeneous solutions.

2

S = (S)o+ I Ck(S)k'
k=1

At the end of a given linearization, the algebraic sums of the displacements for all
linearizations are determined. These displacements are then substituted into the left-hand
sides of equations (1-3) with all terms evaluated in terms of the original equilibrium con
figuration for this load segment. The resulting quantities are the loads corresponding to
this deformed configuration. These loads are compared with the applied loads for this
segment to determine whether another linearization is necessary.

(b) Stiffened suspension bridge. In addition to equations (4) and (5), equations (6-9)
form the basis for a linear solution for the stiffened structure, A solution is begun at point 1
on the cable by assuming cable displacements U I and VI' The displacements U 2 and V2

are computed as for the unstiffened structure. The boundary conditions at the left end of
the deck require that M I = V bl = 0; however, the shear in the first panel, VI' and the
slope at the left support, °1 , must be assumed. On the basis of these initial values, M2'

O2 and Vb2 are determined from equations (7-9), respectively, for i = 1.
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For i = 2, we must first consider the base of the hanger. In addition to the load that
may be applied at the hanger base for this linearization, TVbi , the load from the bridge
deck, Ri , will also be applied at this point. This load must be added to the right-hand side
of equation (3). Linearizing the modified equation (3) by setting N Vbi = 0 and solving for
Ri , we obtain

(14)

Specifically, for i = 2, all is known in equation (14) but R z . Solving for Rz , we can deter
mine Vz from equation (6) in which Pz should be interpreted as the load applied to the
deck for this linearization. The quantities M3' (}3 and Vb3 are calculated from equations
(7-9), respectively, while cable displacements U3 and V3 are determined from equation (5).
This procedure continues across the span until finally, for i = n, one computes Un + 1 and
Vn +1 on the cable and Mn +1 and vb•n +1 on the deck.

As in the unstiffened structure, our assumptions at the beginning point are not likely
to satisfy the terminal boundary conditions. In this case, we have the same force boundary
conditions on the cable as for the unstiffened structure and, in addition, we have the deck
boundary conditions that M n + 1 = vb•n + 1 = O. Here, since we have a fourth-order system,
four homogeneous solutions are carried along with the particular solution. The assumed
initial conditions and loads for each solution are given in Table 2. Again, k = 0 for the

TABLE 2. INITIAL CONDITIONS AND LOADS FOR STIFFENED SUSPENSION BRIDGE

Solution Initial conditions Loads

k (utl. (VI)' (Vtl. (Btl. (THi ). (TVi ). (TVbi ). (Pil.

0 (ul)o (vllo (V1lo (8tlo Actual loading
I (u l ), 0 0 0 0 0 0 0
2 0 (v1h 0 0 0 0 0 0
3 0 0 (V,h 0 0 0 0 0
4 0 0 0 (8tl4 0 0 0 0

particular solution and k = i for the ith homogeneous solution. At the terminal point,
the five solutions are combined to give

(L1Hn + dk (L1Hn + 1)0 (TH •n + do
4 (L1 v" +dk (L1v,,+ 1)0 (Tv.n + 1)0L: Ck + (15)

k=1 (Mn+dk (M n + do 0

(Vb•n + Ih (Vb•n + 1)0 0

The quantities (L1Hn + dk and (L1 Vn + I)k are determined from equation (12). Equation
(15) represents four simultaneous equations with unknowns C1 , C z , C3 and C4 . Solution
of these equations for the constants enables one to superpose the five solutions for any
quantity S of the final solution.

4

S = (S)o+ I Ck(S)k'
k=1

(16)
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At the end of a given linearization, the loads at the cable nodes corresponding to the
deformed configuration are determined just as they were for the unstiffened structure by
equations (1) and (2). When the accumulated displacements are substituted into the left
hand side of equation (3), the total loads at the base of the hangers for the deformed con
figuration are determined. Part of each of these loads is the load known to be applied to
the hanger base for this linearization, TVbi ' The remainder must be the load Ri , which
comes from the deck. Since all panel shears are known for this linearization as deter
mined from equation (16), the deck loads Pi' corresponding to the deformed configuration,
can be determined from equation (6). The cable loads and deck loads for the deformed
configuration are compared with the applied loads for this segment to determine whether
another linearization is necessary.

Numerical difficulties

The initial-value formulation has some purely numerical problems associated with its
application. These problems are not serious if they are understood, and a brief description
of their nature is given in the following.

(a) Suppression technique. Even for reasonably good assumptions for the initial con
ditions, the displacements may reach the order of 1030 times the originally assumed
values. This is because we are dealing with functions that grow in an exponential fashion.
Since the computer can only carry a limited number of significant figures, this kind of
growth is intolerable because round-off and truncation errors will make the results com
pletely meaningless.

To limit the growth, a suppression scheme is used. This is similar to the method ex
plained in detail by West and Robinson [9, 10]. The function of this technique is to keep
the displacements within reasonable bounds. Whenever the displacements in either the
particular or homogeneous solution exceed some acceptable magnitude, then a new
particular solution and the required number of new independent homogeneous solutions
are generated, each with specified displacements at the "suppressed" point. These new
solutions are determined by combining the unsuppressed solutions to satisfy artificial
internal boundary conditions. The advancement then continues across the span until
suppression is again required. Eventually, at the terminal point, the particular solution
is suppressed to the real boundary conditions as indicated in equations (11) and (15).

(b) Initial and suppressed values. The selection of the initial conditions indicated in
Tables I and 2 is not completely arbitrary. Also, the artificial boundary conditions to which
the particular and homogeneous solutions are suppressed must be selected with some care.

Consider first the unstiffened structure. If (udo and (vdo in Table 1 for the particular
solution are too large, then the forces induced by the spring deformations will effectively
submerge the actual load at the first point because only a limited number of significant
figures can be carried. If this occurs, then the particular solution no longer accurately
reflects the load effects at the first point. This can be seen clearly by examining the load
vector of equation (10), which becomes the load vector when equation (5) is applied at
point 1.

Even for the homogeneous solutions, numerical difficulties are encountered if (U1)1
and (vdz of Table 1 are too large. In this case, the loads input from the springs at point 1
are very large and the resulting displacements at point 2 are huge. When suppression is
then attempted at point 2, these homogeneous solutions cannot be combined to get "small"
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displacements because the truncation errors are larger than the displacements sought
through suppression. The result is that the suppressed homogeneous solutions are not
strongly independent.

Along the span, suppression must be performed whenever the displacements of any
solution become large enough to cause numerical problems. At the terminal point, all
solutions are suppressed before attempting to satisfy equation (11). If this is not done, the
forces from the deformations of the terminal springs may be so large that the actual load
at the terminal point may not be reflected in the final solution.

The stiffened structure displays the same kind of numerical problems as does the un
stiffened structure. The same reasoning must be applied in treating these problems as
has been outlined for the unstiffened structure.

Miscellaneous notes

For the sake of simplicity, the discussion thus far has centered about a single-span
structure for which the initial configuration is known. These restrictions will now be
removed.

(a) Initial load configuration. For a conventional suspension bridge, it is generally
assumed that the dead load is constant along the horizontal and that the stiffening member
is unstressed at dead load and mean temperature. For this case, the original dead load
geometry and the forces in all elements of the cable system are easily obtained.

For cable systems having a more complicated dead load, the initial configuration is
more difficult to determine. One way to proceed is to use some approximate scheme to
determine an assumed initial shape and corresponding element forces. The question is,
are these approximations consistent with the known dead load on the structure? This
question can be answered by examining the right-hand sides of equations (23-25). For
example, the bracketed term on the right-hand side of equation (23) is the sum of the
horizontal components of forces in all the elements framing into point i. As pointed out
in the Appendix, if the assumed initial configuration is consistent with the actual dead
load, then this bracketed term will cancel WHi exactly. If the assumed configuration is not
consistent with the actual dead load, then the sum of the bracketed term and WHi will
yield a net horizontal load. Since initially QHi and Qiti are zero, this net load constitutes
the total load THi of equation (1). Similarly, TVi and TVbi of equations (2) and (3) are deter
mined by examining the right-hand sides of equations (24) and (25), respectively. We now
have a problem just like the live load problem. The resulting displacements establish the
actual dead load configuration which becomes the initial configuration for live load.

Of course, if the dead load configuration is not desired, then the complete right-hand
sides of equations (23-25) are taken as the loads TH;' TVi and Tvbi • The resulting displace
ments give the final position of the structure under dead load, live load and temper
ature load. These displacements are, of course, with respect to the initially assumed
configuration.

(b) Three-span structure. Study of the three-span structure requires some additional
considerations.

For the unstiffened structure, the analysis is th~ same as for the single-span structure
except that there are internal points where support stiffness K Hi and K Vi exist. These
points correspond to the tower locations and the stiffnesses are the horizontal and vertical
stiffness of the tower.
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For a stiffened structure, the cable system is handled in the same fashion as for the
unstiffened structure. The manner in which the deck is treated depends on its support
conditions at the tower. The important point is that equilibrium and compatibility be
satisfied at the tower and that a sufficient number of independent homogeneous solutions
emerge from the tower point to continue the initial-value scheme across the span.

For the sake of brevity, no three-span examples are presented here; however, no
additional problems are encountered in their solution.

(c) Fixed supports. If the cable support points are actually fixed, two approaches are
possible. In one, support stiffnesses are selected that are large enough to produce end
displacements that are zero to the number of places being considered. Alternately, the
computational scheme can be varied by actually setting the displacements at the left
support equal to zero and beginning the initial-value problem by assuming the displace
ments at the second point. At the terminal point, the homogeneous and particular solutions
are combined to satisfy the displacement boundary conditions on the cable rather than
the force boundary conditions.

6. EXAMPLE PROBLEMS

In this section, the results of a few numerical problems are presented. The intent is
to compare the results as determined from this method of analysis with those determined
by other investigators.

Example 1
As a first example, an unstiffened structure with a large unsymmetrical load is treated.

The structure and the total loading is shown in Fig. 5. This problem was first presented
by Michalos and Birnstiel [13] and their results have subsequently been substantiated by
other investigators [8, 14]. In the analysis presented here, the cable is divided into ten
segments with the initially assumed configuration taken as that given by Michalos and
Birnstiel. Since the response in this case is quite nonlinear, the load is divided into seven
load segments. The number of linear solutions required for each segment ranges from
six for the first load segment to two for the seventh load segment, with a total of 23 linear
izations. The displacements are determined at all panel points and are given in Table 3.

E = 19,000 kips I in2

A = 0'S5 in2 (3'16 Ibs I ft of length)
Live load = SK at Pt 5

'" '"0 '" If)

N 0 N
r<l '"

N r<l
6 I'- i<i r<l 6

i<i 6 6
en

II

10 at 100 ft = 1000 ft

FIG. 5. Cable structure for Example 1.
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TABLE 3_ DISPLACEMENTS FOR EXAMPLE 1

Horizontal displacement (ft) Vertical displacement (ft)

Michalos and West and Michalos and West and
Birnstiel Caramanico Birnstiel Caramanico

1-690 1-690 -4-669 -4-670
1-407 1-408 -3-291 -3-293

-0-273 -0-272 4-217 4-217
-2·773 -2-773 17-953 17-956
-3-689 -3-691 -0-776 -0-786
-4-842 -4-845 -13-117 -13-129
-5-640 -5-642 -19-149 -19-161
-5-492 -5-494 -18-938 -18-949
-3·810 -3-811 -12-540 -12-548
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These displacements record the movement from the originally assumed configuration to
the final configuration under the total loads_ Table 3 also includes the results obtained by
Michalos and Birnstiel. Excellent agreement is indicated.

Example 2

As an example of the analysis of a stiffened structure, the structure shown in Fig. 6 is
investigated. The structure is divided into ten segments and a live load of 4 kipsjft is
applied at the deck level across the entire span_ Support stiffnesses are large, such that
the cable displacements at the supports are zero to the number of places being reported.
In this problem, the load is applied in two segments, and two linearizations are required
for each load segment.

The final displacements and moments are reported in Table 4. This problem was also
solved using a discrete method of analysis by West and Robinson [9]. Their results are
also given in Table 4. The comparison between the two solutions is very good.

In the studies performed by West and Robinson [9, 10], it was shown that a discrete
formulation of the suspension bridge which uses a small number of segments gives ex
cellent results except in the area near the supports. In this region, the computed moments
and end shear are too small. This is because the grid is too coarse to accurately measure
the effects in this area. In their studies, they also solved a continuous formulation of the
problem. However, this approach does not yield truly accurate results either since the
continuous model provides for hangers all the way into the tower. This also does not

1470 ft.

FIG. 6. Stiffened cable structure for Example 2.
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TABLE 4. DISPLACEMENTS AND MOMENTS FOR EXAMPLE 2

Point
Horizontal cable Vertical cable Vertical deck

Moment (Kip-ft.)displacement (ft) displacement (ft) deflection (ft)

West and West and West and West and West and West and West and West and
Caramanico Robinson Caramanico Robinson Caramanico Robinson Caramanico Robinson

2 -0·140 -0·138 0·802 0·797 0·869 0·880 7,390 7,660
3 -0·219 -0·219 1·582 1·585 1·623 1·643 10,700 10,900
4 -0·206 -0·206 2·178 2·184 2·199 2·222 12,800 13,000
5 -0·122 -0·122 2·551 2·558 2·559 2·583 14,100 14,200
6 0 0 2·677 2·684 2·681 2·706 14,600 14,500
7 0·121 0·122 2·550 2·558 2·559 2·583 14,100 14,200
8 0·205 0·206 2·178 2·184 2·198 2·222 12,800 13,000
9 0·219 0·219 1·582 1·585 1·622 1·642 10,700 10,900

10 0·139 0·138 0·802 0·797 0·868 0·880 7,350 7,660

correctly represent the real situation and gives moments and an end shear that are too
large. The correct results can only be obtained with a discrete model having the correct
hanger spacing. However, this entails a significant computational effort. Therefore, the
procedure developed in this study is designed to allow for variable panel lengths. In this
way, the hangers can be spaced correctly near the supports where it is necessary and spread
out in the center of the span.

The structure of Example 2 has been solved by dividing the span into ten equal panels
of 147 ft. The results for this are reported in Table 4. Three hangers at the correct spacing
of 21 ft are now added at each end of the span to give a total of sixteen panels. Again, as
was the case with ten panels, the load is applied in two segments, and two linearizations
are required for each load segment. The vertical cable deflections and bridge deck moments
at the tenth points of the span for the two solutions are compared in Table 5 to show that
closing the spacing at the ends does not appreciably affect the results at these points.

Figure 7 shows the deck moments near the left support plotted for the continuous
study of West and Robinson, the discrete study with ten equal panels and the discrete
study with sixteen panels. The corresponding end shears are also given. Note that the

TABLE 5. RESPONSE OF STRUCTURE IN EXAMPLE 2 USING DIFFERENT PANEL LENGTHS

Point Ten equal panels Sixteen unequal panels

Vertical cable Vertical cable
displacement Moment displacement Moment

(ft) (Kip-ft) (ft) (Kip-ft)

2 0·802 7,390 0·806 7,370
3 1·582 10,700 1·589 10,700
4 2·178 12,800 2·185 12,900
5 2·551 14,100 2·558 14,100
6 2·677 14,600 2·684 14,600
7 2·550 14,100 2·557 14,100
8 2·178 12,800 2·184 12,800
9 1·582 10,700 1·588 10,700

10 0·802 7,350 0·805 7,320
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FIG. 7. Moments for Example 2 in left tenth of span.
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results for the case of sixteen panels fall between those for the continuous system and the
discrete model with ten panels. The fact that good results can be obtained near the supports
without sacrificing the accuracy near the center of the span, makes this a valuable method.
By using the correct hanger spacing near the towers and a coarser grid in the rest of the
span, good results can be obtained without the added time and effort of using the correct
spacing of hangers throughout.

7. CONCLUSIONS

It is shown that a suspension bridge can be analyzed using a discretized mathematical
model to formulate the governing equations and an initial-value approach for solving
these equations.

The equations of equilibrium, which are nonlinear in the displacement terms, are
solved by a Newton-Raphson method with each cycle being treated as a set of linear
initial-value problems. Numerical difficulties require that a suppression scheme be em
ployed within each linearization. However, the method is still computationally faster
than a discrete method which solves linear simultaneous algebraic equations for each
cycle, unless a very large number of suppressions is needed.

The results of numerical problems agree well with the findings of previous investigators,
both for unstiffened and stiffened structures. Previous studies have indicated that sig
nificant errors are introduced in the end regions of the stiffening truss when a discrete
model with larger than actual hanger spacing is employed. It is demonstrated that this
problem can be corrected by using the actual hanger spacing near the supports while
maintaining a wider spacing throughout the interior portion of the span.

Acknowledgements-This paper is based on part of the research conducted by the senior author under a National
Science Foundation Research Initiation Grant. At the time of this study, the junior author was studying under
a National Science Foundation Traineeship. The authors are grateful for this support.

Thanks are also due to Arthur R. Robinson, Professor of Civil Engineering at the University of Illinois,
who participated in the early conception of the study and who offered suggestions throughout. The authors are
also grateful to Anil K. Kar, who worked on another phase of this research effort and offered much technical
assistance.



1102 HARRY H. WEST and DANIEL L. CARAMANICO

REFERENCES

[IJ J. MELAN, Theorie der eisernen Bogenbrucken und der Hangebrucken. Handbuch der Ingenieurwissen
schaften. 2nd edition (1888).

[2J S. O. ASPLUND, On the deflection theory of suspension bridges. Ingenjorsvetenskapsakademins Handlinger,
184 (1945).

[3J A. A. JAKKULA, The Theory of the Suspension Bridge. Publications of International Association of Bridge
and Structural Engineering (1936).

[4J J. B. JOHNSON, C. E. BRYAN and C. E. TURNEAURE, The Theory and Practice of Modern Framed Structures,
Part 2. John Wiley (191 I).

[5J S. P. TIMOSHENKO, Theory of suspension bridges, J. Franklin Inst. 235 (1943).
[6] S. 0. ASPLUND, Column-beams and suspension bridges Analyzed by Green's Matrix. Chalmers Tekniska

Hogskolas Handlinger. Number 204 (1958).
[7] T. J. POSKITT, Structural analysis of suspension bridges. J. Struct. Div., Proc. Am. Soc. Civil Eng. 92 (1966).
[8J S. A. SAAFIN, Theoretical analysis of suspension bridges, J. Struct. Div., Proc. Am. Soc. Civil Eng. 92 (1966).
[9J H. H. WEST and A. R. ROBINSON, A re-examination of the theory of suspension bridges. Civil Engineering

Series, Structural Research Series No. 322 University of Illinois, Urbana, Illinois (1967).
[IOJ H. H. WEST and A. R. ROBINSON, Continuous method of suspension bridge analysis. J. Struct. Div., Proc.

Am. Soc. Civil Eng. 94 (1968).
[IIJ N. M. NEWMARK, Numerical procedure for computing deflections, moments and buckling loads. Trans.

Am. Soc. Civil Eng. 108 (1943).
[12J R. K. LIVESLEY, Matrix Methods ofStructural Analysis. Pergamon Press (1964).
[13J J. MICHALOS and C. BIRNSTlEL, Movement of a cable due to changes in loading. J. Struct. Div., Proc. Am.

Soc. Civil Eng. 86 (1960).
[14J C. H. THORNTON and C. BIRNSTIEL. Three-dimensional suspension structures. J. Struct. Div., Proc. Am.

Soc. Civil Eng. 93 (1967).

APPENDIX-EQUATIONS OF EQUILIBRIUM

(17)(i = 1,2, ... ,m).

In this Appendix, the basic equations of equilibrium for the cable-hanger system are
derived by applying the principle of minimum potential energy. Definitions of terms
already introduced in the text are not repeated here; however, all new terms are defined.

Taking VT as the total potential energy of the system and ¢i as one of the m admissible
displacements, we have the following m equations of equilibrium:

8VT

8¢i = 0

The total potential energy is composed of two separate parts

VT = VT+nT (18)

where V T is the total strain energy stored and nT is the potential energy of the external
loads.

Referring to Figs. 1 and 2, we have
n n

V T = I, V ij + I, V,ij+!(KHtui+KvIVi+KH,n+tU;+t +KV ,n+l V;+t) (19)
i= t i=2

(20)

where V ij and V lij refer to the strain energy in the final deformed configuration for the
main cable and the hanger elements, respectively. The strain energy of the ith bar, Vij'

in its deformed configuration is given by

EiAi(eid +eil- eit)2
Vij = 2L

iO
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where Ei is the modulus of elasticity, Ai is the cross-sectional area, eid is the initial (generally
dead load) elongation, ei/ is the additional elongation of the bar caused by the displace
ments associated with live load and temperature change, eit is the direct change in length
caused by temperature change and L w is the original bar length. All these quantities
relate to the ith bar. The elongation ei/ = L if Lid' where Lif is the bar length in its de
formed position and Lid is the dead load length. Expressing Lif in terms of the displace
ments shown in Fig. 2, we obtain

U
_ EiAi[h;d(Ui+1-Ui)2+2hidrid(Ui+1-Ui)(Vi+1-Vi)

"J - 2 2'2LiO Lid Lid

r;d(vi+1-vi)2 (eid -eit)(Ui+1 -Ui)2 (eid-ei')(Vi+l-V;)2+ 2 + +-----'-'-'-'-----'----
Lid Lid Lid

2(eid-eit)hiJUi+l-Ui) 2(eid-eit)riivi+l-Vi)+ +_.:.::---"--==---=----=---'-
Lid Lid

h~(eid-eit)(Ui+l-Uif

Lrd

(eid-eit)r;JVi+l -Vi)2

Lrd

2(eid-eit)hidrid(Ui+l-Ui)(Vi+l-Vi)

Lrd

2Lid{Lid - (eid - eit)}Ri+ (eid - eit)2J (21)

where hid and rid are the horizontal and vertical projections, respectively, of the ith bar
in the dead load position, and

R
i

= ~(1 +X;)- {I + (Ui+ 1 ~Ui)2 + (Va 1 ~Vi)2 +hiiui+; -Ui) + rid(Vi+; - V;)
2Lw 2Lw L w L w

h;iui+1 -Ui)2 hidriiui+1-Ui)(Va1-Vi) r;iVi+l-Vif}

2L~ L~ 2L~

and

An expression for Ulif can be similarly derived. Note that in equation (21) the strain
energy has the linear and quadratic displacement terms explicitly separated. All higher
order displacement terms are contained in Ri • This form is convenient because the differ
entiation indicated in equation (17) will yield equations with a linear part separated from
a nonlinear part.

Again, with the aid of Figs. 1 and 2, we have as the potential energy of external loads

"+1 n

Or = 0d- L (WVi+Qv;)Vi+(WHi+QHi)Ui- L (WVbi +QVb;)Vbi (22)
i;1 n;2

where 0d is the potential energy at the initial configuration.
At a typical station i along the cable, the differentiation indicated in equation (17) is

performed with respect to Ui' Vi and Vbi to yield, respectively, the equations for horizontal
equilibrium at point i, vertical equilibrium at point i and vertical equilibrium at point hi.
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For example, OVT/OU i = 0 yields, after some manipulation

Similarly, eVT/eUi = 0 and iJVT/aUbi = 0 produce, respectively,

- {3hUh+ (Ph +Pi + P,;)Ui - PiUj- YhUh + (Yh +Yi +Yli + K Vi)Ui- YiUj - YUVbi + N Vi

_ (Kieidrid _~hehdrhd K/ie,idrUd) I

- L L + L + WVi+QVi+QVi
W M IW

and

(23)

(24)

(25)

where the subscripts h = (i - 1) and j = (i + 1) and

Kk = AkEdLkO

N Hi = ~ [ -KkLkd{Lkd-(ekd-ekl)} ~~:]

N Vi = t [-KkLkd{Lkd-(ekd-ekt)}~:;]

N Vbi = I [- KkLkd{Lkd - (ekd - ekt )} aaRk]
k Vbi

(k = h, i, Ii)

(k = h, i, Ii)

(k = h, i, Ii)

(k = h, i, Ii)

(k = h, i, Ii)

(k = h, i, Ii)

(k = h, i, Ii)

Kue/ith'id
L lid

KUe/itr/id
L lid

Equivalent temperature
loads.

The bracketed term on the right-hand side ofequation (23) represents the summation of the
horizontal components of forces in all elements framing into point i. If the structure is in
equilibrium in its initial configuration, then this will cancel WHi exactly. Similarly, the



Initial-value discrete suspension bridge analysis 1105

bracketed terms in equations (24) and (25) cancel WVi and WVbi , respectively. Thus, for a
structure originally in equilibrium, the right-hand sides of equations (23-25) contain only
live load and temperature loads.

(Receil'ed 3 August 1972: rel'ised 26 Fehruary 1973)

A6CTpaKT-L!:aeTcli $OpMyJIHpOBKa 3a,n:a'II{ B ,n:HcKpeTHoH clJopMe ,n:JIli paCqeTa no,n:BemeHHblX MOCTOB.
YpaBHeHHlI paBHOBeCHlI, KOTopble Boo6me HeJIHHeHHbl, BblplilKeHbI B rrepeMemeHHlIX, pelllalOTCli MeTo,n:OM
HbIOToHa-Pa$coHa. Y'fHTbIBaeTClI JIHHeHHOe pellleHHe Ha'faJIbHbiX 3a,n:a'f. QHCJIeHHble Tpy,n:HOCTH Tpe6YlOT
npHMeHeHHlI cxeMbl nponycKa ,n:JIli KalK,n:oH JIHHeapH3aUHH. L!:alOTclI 'fHCneHHble 3a,n:a'fH KaK ,n:JIlI YCHJIeHHblX
TaK H HeycHJIeHHblX KOHCTpYKU:HH. CpaBHHBalOTcli pe3YJIbTaTbi C nOHCKaMH .npyrHx HCCJIe,n:oBaTeneH.
I1CCJIe,n:YIOTcli 3$clJeKTbl IlpOCTpaHcTBeHHoH 1l0,n:BeCKH Ha pe3yJIbTaTbI, ClleU:HaJIbHO, B KOHu:eBbIX paHoHax
lKeCTKHX CBH3eil.


